Identifying loci under selection against gene flow in isolation-with-migration models.
نویسندگان
چکیده
When divergence occurs in the presence of gene flow, there can arise an interesting dynamic in which selection against gene flow, at sites associated with population-specific adaptations or genetic incompatibilities, can cause net gene flow to vary across the genome. Loci linked to sites under selection may experience reduced gene flow and may experience genetic bottlenecks by the action of nearby selective sweeps. Data from histories such as these may be poorly fitted by conventional neutral model approaches to demographic inference, which treat all loci as equally subject to forces of genetic drift and gene flow. To allow for demographic inference in the face of such histories, as well as the identification of loci affected by selection, we developed an isolation-with-migration model that explicitly provides for variation among genomic regions in migration rates and/or rates of genetic drift. The method allows for loci to fall into any of multiple groups, each characterized by a different set of parameters, thus relaxing the assumption that all loci share the same demography. By grouping loci, the method can be applied to data with multiple loci and still have tractable dimensionality and statistical power. We studied the performance of the method using simulated data, and we applied the method to study the divergence of two subspecies of European rabbits (Oryctolagus cuniculus).
منابع مشابه
Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives.
The divergence of Drosophila pseudoobscura and close relatives D. persimilis and D. pseudoobscura bogotana has been studied using comparative DNA sequence data from multiple nuclear loci. New data from the Hsp82 and Adh regions, in conjunction with existing data from Adh and the Period locus, are examined in the light of various models of speciation. The principal finding is that the three loci...
متن کاملThe efficacy of divergence hitchhiking in generating genomic islands during ecological speciation.
Genes under divergent selection flow less readily between populations than other loci. This observation has led to verbal "divergence hitchhiking" models of speciation in which decreased interpopulation gene flow surrounding loci under divergent selection can generate large regions of differentiation within the genome (genomic islands). The efficacy of this model in promoting speciation depends...
متن کاملInference of Gene Flow in the Process of Speciation: An Efficient Maximum-Likelihood Method for the Isolation-with-Initial-Migration Model
The isolation-with-migration (IM) model is commonly used to make inferences about gene flow during speciation, using polymorphism data. However, it has been reported that the parameter estimates obtained by fitting the IM model are very sensitive to the model's assumptions-including the assumption of constant gene flow until the present. This article is concerned with the isolation-with-initial...
متن کاملThe genomics of adaptation, divergence and speciation: a congealing theory.
In this issue, Flaxman et al. () report the results of sophisticated whole-genome simulations of speciation with gene flow, enhancing our understanding of the process by building on previous single-locus, multilocus and analytical works. Their findings provide us with new insights about how genomes can diverge and the importance of statistical and chromosomal linkage in facilitating reproductiv...
متن کاملDeleterious mutations in a hybrid zone: can mutational load decrease the barrier to gene flow?
The aim of this paper is to investigate the effect of deleterious mutations in a hybrid zone maintained by selection against hybrids. In such zones, linkage disequilibria among hybrid depression loci, resulting from a balance between migration and selection, are crucial in maintaining the barrier because they allow each locus, in addition to its own selection coefficient, to cumulate indirect s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 194 1 شماره
صفحات -
تاریخ انتشار 2013